Bias in nearest-neighbor hazard estimation

نویسندگان

  • Rafael Weißbach
  • Holger Dette
چکیده

In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte Carlo simulation within the three-parameter exponentiated Weibull distribution indicates that a counter-factual normal distribution, as an input to the selector, does provide a good rule of thumb. If bias is the main concern, minimizing the uniform loss yields the best results, but at the cost of very high variability. Cross-validation has a similar bias to the rule of thumb, but also with high variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence

Asymptotically unbiased nearest-neighbor estimators for KL divergence have recently been proposed and demonstrated in a number of applications. With small sample sizes, however, these nonparametric methods typically suffer from high estimation bias due to the non-local statistics of empirical nearest-neighbor information. In this paper, we show that this non-local bias can be mitigated by chang...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Estimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest

    Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...

متن کامل

Software Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms

A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...

متن کامل

روشی نوین در کاهش نوفه رایسین از مقدار بزرگی سیگنال دیفیوژن در تصویربرداری تشدید مغناطیسی (MRI)

The true MR signal intensity extracted from noisy MR magnitude images is biased with the Rician noise caused by noise rectification in the magnitude calculation for low intensity pixels. This noise is more problematic when a quantitative analysis is performed based on the magnitude images with low SNR(<3.0). In such cases, the received signal for both the real and imaginary components will fluc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008